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Abstract

The spectrum analysis of low level E.M.F. Non-Linear Resonance Interactions
(NLRI) between biological tissues and the signals emitted on three sharp
frequency windows by a ‘bioscanner’ Trimprob, as available in literature, could
be used to investigate suspected cases of disease and cancer. The paper is focused
to review the scientific literature that spreads the possibility of the cancer detec-
tion by means of low level radio frequency oscillations and to explain the exper-
imental approach necessary to deeply understand the Trimprob technology. The
system is based on a non-linear radiofrequency oscillator working on 462 MHz
plus the harmonics. The diseased biologic tissues, suspected of cancer, are irra-
diated in the oscillator “ near-field” while a spectrum analyzer placed outside of
the near field detects the oscillator interaction frequency lines with the tissues.
The technology is provided whith a very high dynamic range, that is evidenced
by means of a deep depression, at the resonance, of the interested frequency line
in order of 20 or more decibel (dB). When a resonance approaches, the resultant
effect is quite similar to the Grid-dip meter technology, well known by radio
communications and radar engineers, and that is still used to investigate the
resonance of passive L/C radiofrequency oscillators as well as the new RFID
(Radio Frequency Identification) widely used in the industry. The NLRI
provides a selective structural characterisation, like a sort of ‘electronic biopsy’
response of biologic tissues in support of modern diagnostic imaging techniques.
Further to existing literature describing methods for cancer detection by means
of electromagnetic fields, the paper shows this innovative “in vivo” medical diag-
nostic equipment applications.

Key words: Bioscanner, Trimprob, N.L.R.I. (Non Linear Resonance Interaction),
cancer diagnosis, electromagnetism, electronic biopsy
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Review of scientific literature

In the past century, a great number of researchers have given their contribution to the
study of the interactions between biological matter and electromagnetic fields. Many
investigated the dielectric properties of living matter. Some others analyzed the differ-
ences between a cancerous agglomerate of cells and homogenous or ‘normal’ tissues.
The period between the First and the Second World War spanned the early days of radio
and electronics: vacuum tubes were the radio frequency oscillation generators, the spec-
trum ranged between a few kHz and 15 MHz. Measurements on biological materials
were based on resistivity or impedance and instruments such as the Wheatstone bridge.
After the second world conflict, investigations on biological materials were extended
into the microwave bands1.
Among the pioneers in this field, there were H. Fricke2 and S. Morse3. In 1926, in

their paper entitled “The electric capacity of tumors of the breast”, they reported that
“malignant tumors have a greater polarizability than normal breast tissues or benign
tumors”. They carried out their experiments at low frequencies around 20 kHz. Tissues
were cut into small blocks and placed in a conductivity cell for measurement. They
claimed that measurements performed on tissues from locations other than the breast
convinced them that the method was of general applicability and that in some cases the
“measurements may be made directly on the patient”. Following the publication of
these results, Fricke published a paper in which he declared that “It seems probable that
the measurement of the capacity may provide a very practical method for diagnosing
the malignancy of a tumor.” These experiences are of a great importance to explain and
clarify some aspects that arises in the common use of the Bioscanner/Trimprob device,
and it is extremely interesting to read this paper in which the authors wrote: “While the
resistance of biologic tissues has been studied by many investigators, little attention
has been directed to their capacity”. The term “capacity” is to be associated to the well
known property of the tissues which is usually called its “polarization”. Theoretically
we assume two type of electric capacity, the first is the “static capacity” that is inde-
pendent to the frequency of the alternating current, the second is the “polarization” type
that depends upon the interphases in the tissues and suggest that capacity might have a
considerable biologic significance. The “polarization” capacity is related to the alter-
nating current applied or irradiated to the tissue under test. In their paper, Fricke and
Morse claim: It has been a constant surprise to find that the capacity of malignant
tumors of the breast is so consistently larger than that of normal tissues in the same
location or of benign tumors as to make its estimation in any individual case clearly of
diagnostic value.
As above reported, these aspects are important to clarify the mechanism of the non

linear resonance interaction applied to the diagnosis by means of this technology. It is
known by the users, that the Trimprob works on three frequencies, and that the first is
462 MHz , while the others are the harmonics of the first ones.
Despite the frequency used for the analysis, but in accordance with the Fricke and

Morse paper, the tissue capacity values have to be higher for the malignant tumors,
lower for benign and much lower for healthy ones. The measured values are also greatly
different in the order of four times greater for malignancy than for healthy tissues. In
other words, we have to expect that a malignant cells agglomerate, that it is character-
ized by a high capacity, must have a non linear resonance interaction on the lower
frequency of the harmonically related group emitted by the Bioscanner/Trimprob.

Eur. J. Oncol. Library, vol. 5
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Differently, the benign pathologies, like benign prostate hypertrophy or breast fibromas,
will not have the same capacity than a malignant tumor and of course, the non linear
resonance interaction could be detected on a higher frequency.

Materials and Methods

The main feature of Trimprob apparatus is a cylindrical probe shown in fig. 1, within
which a resonant cavity incorporates a transmission line tuned to the frequency of oscil-
lation which is in the 65 cm wavelength band (462 MHz).
At the open end of this line there is a semiconductor with non-linear characteristics,

which is activated by a nanosecond electromagnetic pulse. This transient provides an
injection of electromagnetic energy into the tuned line, which performs a damped oscil-
lation. This particular tunable amplifier-oscillator represents the core of the Trimprob
diagnostic device. It possesses lock-in or synchronization characteristics and, because of
its particular construction, it produces a harmonically related group of coherent electro-
magnetic waves. These oscillations are radiated as a beam through the “beam window”
of the oscillator dome at the end of the probe, where it has been geometrically focused,
and the beam is used to irradiate the diseased tissues.
The working principle can be explained by considering the equivalent circuit diagram

of figure 2. The left part stands for the probe and the right part for the tested biological
tissue, while the coupling is represented by (virtual) interrupted lines. Inside the probe,
the transistor T activates an electric circuit, which has a natural frequency of oscillation
f1 that is determined by self and capacity of this circuit. The current I passing through T
is a non-linear function of the potential difference V. Actually, I = -aV + bV2 + gV3,
where a defines a “negative resistance”. It results from a positive feedback, mediated by
magnetic coupling with the self of the first circuit. This non-linear system produces
stationary oscillations of well-defined amplitude, but when the probe is brought close to
the tested biological tissue, it becomes an “active oscillator” that interacts with a
“passive oscillator”.

C. Vedruccio: Polarizability of normal and cancerous tissues, a radiofrequency NLRI
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Fig. 1. The Trimprob equipment is composed by the Bioscanner probe and a computer based spectrum
analyzer
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Although the irradiated biological system contains various subsystems that could be
set in forced oscillations, their mutual interactions are negligible. It is therefore sufficient
to consider the effects of the active oscillator on one particular passive oscillator of given
resonance frequency f2. We can even imagine a circuit, where the self and capacity deter-
mine the frequency f2, while the resistance R defines energy absorption. The probe acts
there like an “open capacity” and the tested biological tissue is subjected to the resulting
electric field. This type of coupling is unusual. It involves a capacity C that increases
when the probe approaches the tested tissue. Since this capacity facilitates the passage
of high frequency currents, we can call this a dynamic coupling. All these features are
taken into account by two coupled differential equations, describing the possible varia-
tions of the potential differences V and U. The detailed mathematical treatment is avail-
able on internet1, but the basic ideas can be expressed in simple terms. Let us consider
the particular case where the active oscillator is unperturbed (C = 0). The equation for V
reduces then to the well-known Van der Pol equation, initially introduced to account for
the possible actions of a triode. Even when the amplification coefficient a is very small,
the rest-state (V = 0) will be unstable. The slightest perturbation will be amplified and
the capacity will accumulate charges, but when they increase, there will be also a greater
tendency towards discharging. The system will end up with a stationary harmonic oscil-
lation of frequency f1 and given amplitude for the potential difference V. For larger
values of a, higher harmonics will appear, since the equation for V contains terms that
vary like V2 and V3. This remains true when the active oscillator is coupled to a passive
oscillator.
We can thus adopt a solution for V that accounts for the existence of oscillations at a

fundamental frequency f and its harmonics, 2f and 3f. The value of f, as well as the
amplitudes and phase factors of all these components can only be specified, when we
take into account the fact that V produces forced oscillations for U and that this has an
effects on V, because of C. The result can be summarized in the following way: the
active oscillator is able to “feel” what happens inside the tested biological tissue, since
it has to transfer energy to the passive oscillator to produce forced oscillations of the
hidden entities. The active oscillator is also able to “tell” us how the passive oscillator is
responding, since the amplitude of its own oscillations is strongly reduced when there is
a large energy transfer. This is revealed, indeed, by a reduction of the amplitude of the
emitted wave, displayed on the screen of the spectrum analyzer. The mathematical treat-

Eur. J. Oncol. Library, vol. 5
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Fig. 2. Coupled active and passive oscillators equivalent electric circuit
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ment reveals that the active oscillator draws more energy from the batteries when reso-
nance is achieved, but its own energy is reduced, as if it had to make a “big effort”. This
mechanism is the essence of the non-linear resonance interaction1, 4, 5.
Although the values of f1 and f2 are fixed, it is possible to achieve, or at least to

approach, ideal resonance where the “dip” of a given spectral line is strongest, by
changing the value of C through a modification of the distance between the probe and
the tested tissue. The first spectral line is very sensitive to the existence of a resonance,
when the negative resistance a is small, but a higher value will allow for a simultaneous
search of resonance phenomena at the fundamental frequency f and its harmonics 2f, 3f,
etc.
The effect of this interaction is easily detectable by means of a spectrum analyzer feed

by a small antenna. At the resonance, on one or more of the spectral lines, two effects
are detectable: the first is related to the transfer of an amount of radiofrequency from the
generator probe to the diseased tissue, that absorbs a part of the signal on the proper
frequency line (dynamic resonance), while the second effect it is related to the deforma-
tion of the electromagnetic pattern emitted by the probe, due to the interaction with a
resonating diseased tissue, that produces in the “near field” a sort of parasitic resonating
element able to deflect the waves in other spatial directions, in the same way that beam
antennas for radio communications works.
The subject under test must be further from the probe than the “near field”, and the

same applies to the spectrum analyzer, which is a part of the system. Using this arrange-
ment, it is possible to observe an effect that appears as absorption of one or more of the
spectral lines radiated by the scanner. This is observed on the spectrum analyzer display,
that transforms the received signal into a Fast Fourier Transform (FFT). These lines are
specifically tuned to the types of tissues to be investigated. At the moment, three spec-
tral lines are used: the first, corresponding to the wavelength, responds specifically to
highly anisotropic states like micro-agglomerates of cancer cells; the second line
responds to parenchyma (soft tissues) diseases; the third line responds to anomalies of
the lymph and vascular system.
The interaction between a non-linear active oscillator and an ordinary (linear) passive

oscillator leads to the peculiar phenomenon of “non-linear resonance interaction”. A
similar behavior is known as a grid-dip meter (g.d.m.). Initially, it contained a triode6
that was associated with an oscillating circuit in such a way that it delivered a stationary
oscillation at one particular, easily tunable frequency. The tunable active oscillator could
be coupled by magnetic induction with another oscillating circuit, containing a real coil.
When such a grid-dip meter is tuned, so that its natural frequency is identical to the
natural frequency of the passive oscillator, there will be a resonance. Since the active
oscillator is transferring energy to the passive oscillator, the oscillating current passing
through the coil of the active oscillator is reduced, and an ammeter, included in the grid
circuit, will indicate this effect. At resonance, there appears a “grid-dip”, but to avoid
ambiguities, the active generator should produce no harmonics. When a spectrum
analyzer is used to monitor the near field and primarily the far field emitted by the g.d.m.
coil in the free space, while interacting with a tuned for resonance, passive L/C simple
circuit, we can observe some interesting not commonly investigated effects.
Fig. 3A and 3B shown the necessary setup for this experiment: A Millen mod. 90651-

A g.d.m. placed on a laboratory wooden table near a passive oscillator composed by an
U shaped coil paralleled by a 30 pf variable air spaced capacitor. The circuit is tunable
in frequency around the 140-170 MHz band, that was used to facilitate the passive circuit

C. Vedruccio: Polarizability of normal and cancerous tissues, a radiofrequency NLRI
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realization as well as a proper coupling with the g.d.m. The passive oscillator U coil is
placed in the near field of the g.d.m. test coil. At a distance of at least 50 cm, just outside
the near field, another portable spectrum analyzer with a 1/8 wavelength rod antenna
picks up the g.d.m. far field.
A slight tune of the g.d.m., to achieve the resonance with the passive circuit, is

evidenced by a sharp dip of the ammeter current. This common and known effect repre-
sents the normal use of the instrument. At the same time, the far field received by the
spectrum analyzer antenna shows a strong dip of the corresponding frequency line as
evidenced in figs. 4-5;
The spectral line will drop the amplitude more than 20 decibel and could be in the

order of 30 or more dB. In other words the frequency line will disappear from the
display. Instead the near field detection will show a little attenuation of the spectral line
in the order of few dB. This far field monitoring, to display the waves propagation of a
passive oscillator interacting with an active one, was not previously reported in literature
and represents the basis of the Trimprob operations.
The use of a g.d.m. not consent the cancer or other disease detection but it is used,

scaled in frequency, for field modeling purposes and for other experiments and labora-
tory measurements, cause the magnetic coupling of the oscillators, although the propa-
gation of the involved radiofrequency field is the same of the diagnostic device, that is
not easily influenced by magnetic-coupled passive oscillators.
The EM cancer detector is different, since it allows for an electric and no magnetic

coupling, by means of a quarter wavelength antenna, activating charged particles inside
biological tissues or other polarizable materials. Moreover, there are harmonics, that the
spectrum analyzer allows for a distinction of possible resonance effects for anyone of the
frequency components and could be considered like a sort of ‘electric field capacity
coupled grid dip meter’ provided of a far field detection. Both g.d.m. and Trimprob, are
provided of synchronization capabilities1 that are evidenced by a loop locking of the

Eur. J. Oncol. Library, vol. 5
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Fig. 3. A) Experimental asset. The far-field spec-
trum analyzer is placed on the table about 50 cm.
far from the g.d.m and the passive oscillator. A
small antenna picks up the r.f. field. The author
right hand is moving the L/C oscillator tuning to
achieve a resonance with the grid dip meter: when
the resonance is achieved, the spectral line on the
display is immediately depressed (B)
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active oscillator frequency respect the passive ones. Effect evidenced by the spectrum
analyzer tracking capabilities that measures not only the amplitude, but also the precise
frequency at the interaction resonance. It is astonishing observe the damping force oppo-
site to frequency variations when the two oscillators are in their respective ‘capture
range’. To have diagnostic capabilities the irradiated radiofrequency by the probe has to
be of few about ten milliwatt; or the interaction with the tissues will be no more
evidenced cause excessive oscillator coupling and other saturation effects. A similar
behavior is common with not well designed g.d.m., when these instruments are used to
analyze the resonance of passive L/C oscillators, especially when the g.d.m. power is
excessive. Instead, in the case of the Bioscanner, very low in level signals, in the order
of microwatts could still interact with near the skin anomalies on 462 MHz, but a more
sensitive spectrum analyzer is required, to display the far field. An experimental tunnel
diode7 nonlinear oscillator probe was realized and laboratory tested by the author. This
could represent a promising technology for a skin cancer like melanomas, detector,
useful also for a low level e.m.f. interaction device with cells, in laboratory experiments.
The lock-in characteristic is also evidenced by the immediate synchronization in
frequency of a couple of ‘Bioscanner’ probes when such a non-linear oscillators are in
their respective ‘capture range’, that is about one wavelength wide. Greatest distances
are possible with the aids of corner reflectors to focusing both the probe fields. The spec-
tral far field line amplitude, due to the phase synchronization of the oscillators, is greater
than for a single oscillator.

Opinions and implications

The first experiments, carried out by the author in the early days of the Bioscanner
invention and development, as well as several clinical trials during the last years, have

C. Vedruccio: Polarizability of normal and cancerous tissues, a radiofrequency NLRI
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Fig. 4. The g.d.m. oscillator line out of resonance
at 152.5 MHz

Fig. 5. Frequency resonance interaction, the far
field spectral line is depressed
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scientifically validated the efficacy of the described low level e.m.f. cancer detector in
several body organs like breast8, prostate9-11, bladder12, 13, stomach-duodenum14, 15,
thyroid16, 17, colon-rectum18. The Trimprob clinical diagnostic accuracy as reported in
Table 1, that resumes the above mentioned clinical studies19, spans several applications
in the field of characterization of benign vs. malignant pathologies, prevention,
screening capabilities and some other not disclosed here, possible applications.
In the last years was only possible to realize a not invasive diagnostic tool based on

this technology, commercially named Trimprob, that was based on these researches,
‘medical CE’ certified, and quite diffused in Italy and abroad. The above mentioned
results, still requires an important consideration: the cancer detection is possible, with
the described device, only on the cited sharp frequency window centered on 462 MHz,
no more than 8 MHz wide. Outside this range, the nonlinear resonance generator doesn’t
interact with the diseased tissues.

Eur. J. Oncol. Library, vol. 5
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Table 1 - Trial Results Sinthesis

Organ Sens. Specific. V.P.P. V.P.N. Accuracy

Prostate
1 - Trials by dr. Bellorofonte (Milano);
European Urology (2005) 95 43 94 90

2 - Trials by prof. Tubaro (Roma);
Urology (2008)
Solo Trimp. 86 63 60 88 72
Trimp+DRE 96 57 59 95 72

Bladder
Trials by dr. Leucci (Lecce);
Electromagnetic Biology and Medicine (2007) 87,5 90,5 83,3 91,1 89,5

Breast
Trials by IEO-MI (dr. Paganelli-dr. De Cicco);
Tumori (2006) 84 75 80 72

Tyroid
Trials by Prof. Sacco;
Chirurgia Italiana (2007) 100 100 100

Stomach-duodenum
1 - Trials by dr. Mascia;
International Review of the Armed Forced
Medical Service (IRAFMS) (2005) 93 93 95 92

2 - Trials by dr. Sacco;
Chirurgia Italiana (2007) 100 100

Rectum
Trials by prof. Leo, Dr. Vannelli
Istituto Nazionale dei Tumori (MI);
Disease of Colon & Rectum (2009) 94 85 86 93 89
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